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MTT and MTF

We consider two closely related problems1:

Multi-target tracking (MTT)
In MTT, the objective is to estimate target trajectories, including
when targets appear and disappear.

Multi-target filtering (MTF)
In MTF, the objective is to estimate states of targets that are
currently present.

1Ristic, B. et al, “A metric for performance evaluation of multi-target
tracking algorithms”, IEEE Trans. of Sign. Proc., 59(7), 2011.
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Why multi-target tracking (MTT)?

MTT is important in many contexts:

Airport/domestic surveillance:

– e.g., to analyze who
dropped the bag by the
entrance.

Trajectory information can
provide information about:

– properties of cells,
– object types

(birds/UAVs/. . . )
– how much a football

player runs.
From goo.gl/sckyBQ.
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An MTT illustration

Standard MTT models for point objects:

– Targets move and may
appear/disappear with time.

– Measurements:

1 0/1 detections per target,
2 possibly also false

detections,
3 unknown associations

targets–detections.
time

state

1 2 3 4 5

1

2

target states
measurements

Objective

Estimate trajectories from sequence of detections.
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Why multi-target tracking (MTF)?

We work with self-driving
vehicles:

– estimate states of nearby
road users,

– enables us to avoid
collisions,

– target trajectories often
not important.

Other applications include positioning of

1 airplanes,
2 human cells,
3 space debris.
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An MTF illustration

Identical models for MTT and MTF!

Standard models for point objects:

– Targets move and may
appear/disappear with time.

– Measurements:

1 0/1 detections per target,
2 possibly also false

detections,
3 unknown associations

targets–detections.
time

state

1 2 3 4 5

1

2

target states
measurements

Objective

Estimate current target states from sequence of detections.
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MTT and MTF solutions?

How to approach MTT and MTF?

Most attempts are Bayesian:

– optimal trade-off between information

1 about realistic trajectories,
2 from measurements.

– gives a posterior density
⇒ we can compute

1 probabilities of different events,
2 optimal decisions/estimates (e.g.,

MMSE).
1 1.1 1.2 1.3 1.4 1.5

x1

0.9

1

1.1

1.2

1.3

x 2

True states
Measurements
Filter estimates
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Bayesian statistics and outline

In Bayesian statistics:

we compute posterior
densities of, x ,

posterior density summarizes
what we know about x ,

Very useful! E.g., can
compute optimal estimates. x

prior

posterior

likelihood

Outline:

1) Sets of trajectories: suitable x in MTT and MTF?
Which are our quantities of interest?

2) Conjugate prior densities: reasonable priors and likelihoods to
obtain tractable posteriors?

3) Metrics: how can we measure performance in MTT and MTF?
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Some notation

Target states: (for a single target)

are denoted xk where k is our time index.
often contain position, velocity, etc.
may also contain other properties: color, age, size, etc.

Measurements:

zk =
{
zk1 , z

k
2 , . . . ,

}
is the set of measurements at time k .

Zk =
(
z1, . . . , zk

)
denotes the sequence of measurements up

to and including time k .
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State in MTF

MTF: the set of target states is a suitable state

xk =
{
xk1 , x

k
2 , . . . , x

k
nk

}
where nk is ]targets present at time k .

Example:

x3 = {1.3, 1.8}
n3 = 2.

time

state

1 2 3 4 5

1

2

target states
measurements

Objective in MTF

Recursively compute p(xk
∣∣Zk).
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State in MTF

Why is

xk =
{
xk1 , x

k
2 , . . . , x

k
nk

}
a suitable state?

1 xk captures/is our quantity of interest,
2 xk is a minimal representation:

xk 1-1←→ physical quantities of interest.

Example:

x3 = {1.3, 1.8}
n3 = 2.

time

state

1 2 3 4 5

1

2

target states
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MTF algorithms

We can use conjugate priors (see 2nd part) to recursively
approximate

p(xk
∣∣Zk)

using PMB and PMBM filters.

Many other filters have also been developed, including

1 Probability Hypothesis Density (PHD)
2 Cardinalized PHD (CPHD)

filters.

This state representation can also be used to motivate Multiple
Hypothesis Tracking (MHT) algorithms from a Bayesian perspective.
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State in MTF

Why not use, e.g., an ordered vector
x̃k =

[
xk1 , x

k
2 , . . . , x

k
nk

]
?

The ordering

1 does not convey relevant information,
2 cannot (generally) be inferred from physical reality.

Example:

x̃3 = [1.3, 1.8] or

x̃3 = [1.8, 1.3]?
time

state

1 2 3 4 5

1

2

target states

Both the transition model and posterior would need to handle
uncertainties in the ordering
 arbitrary choices and irrelevant uncertainties!
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State in MTT

MTT: we argue that the set of trajectories is a suitable state

Xk =
{
X k

1 ,X
k
2 , . . . ,X

k
Nk

}
,

where X k
i is a trajectory and Nk is ]targets present until time k .

We denote trajectories as X = (t, x1:i ), where

t: start time,
i duration,
x1:i = (x1, x2, . . . , x i ) sequence of target states.

Example:
X3 = {X 3

1 ,X
3
2 } where

X 3
1 = (1, (0.5, 0.8, 1.3))

X 3
2 = (2, (2, 1.8)).

time

state

1 2 3 4 5

1

2

target states

Chalmers University of Technology Tools for MTT and MTF L. Svensson



State in MTT

Note: three possible trajectory types during prediction:
1 persist/survive: extended by including the new state at the end

of the trajectory.
2 ended/dead: remain the same.
3 newly born: obtain a trajectory X = (k , xk).

Trajectories are never removed from the set.

Example:
X1 = {X 1

1 } where

X 5
1 = (1, (0.5)).

time

state

1 2 3 4 5

1

2

target states
measurements

Objective in MTT
Recursively compute p(Xk

∣∣Zk).
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MTT using sets of trajectories

One can use conjugate priors for sets of trajectories to develop
algorithms.

For standard models, the result resembles MHT:

1 hypothesis trees that grow rapidly,
2 merge/prune branches to reduce complexity.

Complexity?

Suppose we are given a data association hypothesis, θ.
To compute p(Xk

∣∣Zk , θ) we should smooth our estimates at
all times, 1, 2, . . . , k . Unfeasible!
In practice, we often only update estimates for last L steps,
k − L + 1, . . . , k , where L is a design variable.
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Example: standard measurement model

Each target produces a noisy measurement with a probability of detection. There is
additional clutter.
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TPHD: a PHD filter for trajectories

One can also use sets of trajectories to extend the PHD filter to
trajectories.

Idea: recursively approximate p(Xk
∣∣Zk) as a Poisson

multitrajectory PDF,
ν({X1, . . . ,XN}) = e−λνλNν

N∏
i=1

ν̆(Xi ).

Scenario and results assuming standard model for point targets:

The algorithm efficiently estimates trajectories in a principled
manner.
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Labeled sets as state

Another approach to MTT is to use sets of labelled target states

append target states with a static label, `,

x̃ = (x , `).

two targets cannot share the same label,
normally, labels lack physical interpretation and are
unobservable,
xk = {x̃k1 , . . . , x̃knk} is used as state variable.

Labels enable us to connect
state estimates across time.

Labels are arbitrary; we could
replace ◦ with ♦ and � with ◦
without changing trajectories.

Chalmers University of Technology Tools for MTT and MTF L. Svensson



Labeled sets and trajectories

A sequence of sets of labeled states (left figure) fully describe a set
of trajectories (right figure).

However, labels are arbitrary

(x1, . . . , xk)
1-189 physical quantities of interest.

In theory, one could compute p(x1, x2, . . . , xk
∣∣Zk), but this is

essentially a more involved version of p(Xk
∣∣Zk).
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Labeled sets and trajectory estimates

Standard approach: recursively compute

p(xk
∣∣Zk),

and extract estimates x̂k .

In many cases, this yields reasonable estimates.

In simple scenarios, it resembles approximating p(Xk
∣∣Zk) and use

L = 1 in that there is no smoothing.

However, let us look at these marginal densities

p(x1
∣∣Z1), p(x2

∣∣Z2), . . . , p(xk
∣∣Zk),

in a more challenging example.
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Label uncertainties: example

Toy example: Suppose we are tracking two people, who
occasionally meet to chat together. Labels are ±1 at k = 1.

k=1: Pr[x1 = {(+5,+1), (−5,−1)}] = 1
k=6: we are now confused about labels
Pr[x6 = {(+5,+1), (−5,−1)}] =
Pr[x6 = {(+5,−1), (−5,+1)}] = 0.5.
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Are label uncertainties/mixed labeling a problem?
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Label uncertainties: example

Toy example: Suppose we can tell that the persons do not move
from time 6 to 10.
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` = 1

` = −1 ` = +1?
` = −1?

` = +1?
` = −1?

What do we know about the labels at time 10?

Still equally confused about labels:

Pr[x10 = {(+5,+1), (−5,−1)}] = Pr[x10 = {(+5,−1), (−5,+1)}] = 0.5.
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Label uncertainties: example

Toy example: Suppose we can instead tell that the persons change
place from time 6 to 10.
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Label uncertainties: conclusions

Conclusions?

Trajectories are assumed known from time 6 to 10.

Still, p(x10
∣∣Z10) is identical for static and crossing trajectories.

⇒ p(x6
∣∣Z6) and p(x10

∣∣Z10) provide no information about how to
“connect the dots”.

In fact, once we have “total mixed labeling”, a labeled set contains
as much trajectory information as an unlabeled set.

Using sets of trajectories, we are able to tell if they stayed in the
same place or not.
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Label uncertainties: remark

Note that trajectory information is often important and
non-trivial to extract.
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Bomb?
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Label uncertainties: birth process

Appearing targets are modeled using a birth process, and label
uncertainties may arise already at target birth.

Example:
Imagine tracking two people
who enter a room together.

In many cases, this leads to
mixed labeling, even when
trajectories can be estimated
accurately.

A room

Door

Poisson processes are commonly used birth processes, but the
density of a labeled Poisson RFS satisfies, e.g.,

π({(x1, `1)(x2, `2)}) = π({(x1, `2)(x2, `1)}),

which leads to mixed labeling when two targets appear
simultaneously, even if they are far apart.
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Sets of trajectories: concluding remarks

MTT: we argue that the set of trajectories is a suitable state

Xk =
{
X k

1 ,X
k
2 , . . . ,X

k
Nk

}
,

where X k
i is a trajectory.

1 Xk is our quantity of interest,
2 Xk is a minimal representation:

Xk 1-1←→ physical quantities of interest.

Objective
Compute

p(Xk
∣∣Zk).

That is, compute posterior density of our quantity of interest.

Sets of trajectories, Xk , enable
1 Development of novel algorithms, e.g., TPHD.
2 Straightforward extraction of trajectory information in a fully

Bayesian manner.
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Bayesian statistics and outline

In Bayesian statistics:

we compute posterior
densities of, x ,

posterior density summarizes
what we know about x ,

Very useful! E.g., can
compute optimal estimates. x

prior

posterior

likelihood

Outline:

1) Sets of trajectories: suitable x in MTT and MTF?
Which are our quantities of interest?

2) Conjugate prior densities: reasonable priors and likelihoods to
obtain tractable posteriors?

3) Metrics: how can we measure performance in MTT and MTF?
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Models in MTF

Things to model:

Prior:
1 target birth
2 target motion and death

Likelihood:
1 target detections
2 false detections.

Posterior: p(xk
∣∣Zk)

time

state

1 2 3 4 5

1

2

target states
target detection
false detection

Key components: multi-Bernoulli (MB) and Poisson processes.
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Bernoulli processes

Definition: Bernoulli
x is Bernoulli random finite set (RFS) if

p(x) =

{
1− r if x = ∅
r p1(x) if x = {x},

that is, it can only contain zero or one object states.

Here, r is an existence probability and p1(x) is a density.

Things it can model:

Set of detections from a target
r =prob. of detection, Pd .

Distribution of a single target
r =probability of existence
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multi-Bernoulli processes

multi-Bernoulli RFS

x is multi-Bernoulli (MB) RFS if

x =
n⋃

i=1

xi

where x1, . . . , xn are independent Bernoulli RFS.

Things MBs can model:

Set of target detections,
conditioned on the set of
targets.

Posterior distribution of
targets.

Distribution of appearing
targets; the birth process.
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multi-Bernoulli mixture (MBM) processes

If fij(xj) are Bernoulli densities, then

f mb
i (x) =

∑
x1]···]xn=x

n∏
j=1

fij(xj)

is a MB density.
Models: n potential targets (tracks).

x is a MBM RFS if its density is

f mbm(x) =
∑
i

wi f
mb
i (x),

where
∑

i wi = 1.
Models:

1 wi probability of data association
hypothesis i

2 f mb
i (x): distribution of potential
targets given ith hypothesis.
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Poisson processes

Definition: Poisson processes

x is Poisson RFS with intensity λ(x) if

p(x) = exp

[
−
∫
λ(x) dx

]∏
x∈x

λ(x)

Interesting properties:

1 We can generate x = {x1, . . . , xn} ∼ p(x) by
i) generating n ∼ Poisson(λ̄)

ii) generating x1, . . . , xn ∼ λ(x)

λ̄

where λ̄ =
∫
λ(x) dx .

2 If A and B are two disjoint regions, x
⋂
A and x

⋂
B are

independent Poisson processes.
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Poisson processes

Definition: Poisson processes

x is Poisson RFS with intensity λ(x) if

p(x) = exp

[
−
∫
λ(x) dx

]∏
x∈x

λ(x)

Things a Poisson RFS can model:

Set of false detections (clutter
measurements).

Distribution of appearing
targets; the birth process.

Set of target detections from a
single extended target.

Example:
λ(x) = 1.3N (x ;µ1,P1) + 0.9N (x ;µ2,P2)
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Filtering recursions

Objective in MTF
Recursively compute p(xk

∣∣Zk).

Most Bayesian filters rely on prediction and update steps:

Updatezk x̂k
p(xk

∣∣Zk)

p(xk−1
∣∣Zk−1)Pred.p(xk

∣∣Zk−1)

k ← k + 1

Another key property

p(xk−1
∣∣Zk−1) and p(xk

∣∣Zk) are the same type of density
⇒ we (may) have a recursive algorithm!

Example: in a Kalman filter, both p(xk−1
∣∣Zk−1) and p(xk

∣∣Zk) are
Gaussian.
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Filtering recursions

Standard approach to filtering
1 Select a density parameterization p(x;θ).
2 Start from

p(xk−1∣∣Zk−1) ≈ p(xk−1;θk−1|k−1)

and find θk|k such that

p(xk
∣∣Zk) ≈ p(xk ;θk|k).

p(x;θ) = N (x;µ,P)

p(x;θ) =
∑N

i=1 w
(i)δ(x− x(i))

KF, EKF, UKF, CKF, PDA,
NN, GNN, PDA, JPDA.

Particle filters.

What is a suitable parameterization p(x; θ) for MTF?

Chalmers University of Technology Tools for MTT and MTF L. Svensson



Conjugate priors for filtering

In MTF and MTT we can use conjugate priors.

Conjugate priors in multi-object filtering
A family of distributions, {p(x; θ)}θ is conjugate (to certain motion
and measurement models) if

p(xk−1∣∣Zk−1) = p(xk−1; θk−1|k−1)

⇒ ∃θk|k−1, θk|k :

{
p(xk

∣∣Zk−1) = p(xk ; θk|k−1)

p(xk
∣∣Zk) = p(xk ; θk|k)

Example: the family of Gaussian densities is conjugate to
linear and Gaussian state space models.
Note 1: conjugate families seem to enable exact filtering.
Note 2: computing p(xk

∣∣Zk) may still be intractable.
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PMBM: a MTF conjugate prior

Poisson multi-Bernoulli mixture (PMBM)
A PMBM is a conjugate prior to standard models for MTF.
That is, if p(x1) is a PMBM, so are all future densities p(xk

∣∣Zk−1) and p(xk
∣∣Zk ).

This holds for both point and extended targets.

Definition: PMBM
x is a PMBM RFS if

x = xp ] xmbm,

where xp a Poisson RFS and xmbm is an MBM RFS.

Poisson: set of undetected targets.

MBM: set of detected targets.
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A Poisson process to model undetected targets

Poisson intensity increases in occluded areas where we may have
undetected objects.
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PMB prediction

Let us illustrate the prediction and update for a PMB.

Prediction events:

1 existing targets may move,
2 or die (disappear),
3 new targets may arrive: Poisson birth process, λb(x).

Previous posterior, p(xk−1
∣∣Zk−1):
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Predicted density, p(xk
∣∣Zk−1):
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PMB prediction

Let us illustrate the prediction and update for a PMB.

Prediction events:
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PMB prediction

Let us illustrate the prediction and update for a PMB.

Prediction events:
1 existing targets may move,
2 or die (disappear),

3 new targets may arrive: Poisson birth process, λb(x).

Previous posterior, p(xk−1
∣∣Zk−1):
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PMB prediction

Let us illustrate the prediction and update for a PMB.

Prediction events:
1 existing targets may move,
2 or die (disappear),
3 new targets may arrive: Poisson birth process, λb(x).

Previous posterior, p(xk−1
∣∣Zk−1):
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PMB update

The MB contains Bernoulli components that we often call tracks.
Suppose we have n tracks (n = 2 in illustrations).

Update step:
For each measurements we have n + 1
hypotheses:

1 For i = 1, 2, . . . , n: measurement was
generated by track i . ⇒ ri = 1.

2 Measurement was generated by
previously undetected target or
clutter.
⇒ create a new track!
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Note 1: tracks are initiated based on measurements.

Note 2: posterior is a mixture, due to the many different
hypotheses.
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PMBM recursions

Number of hypotheses grows quickly with each update.

Basic idea: use pruning and merging to reduce ]hypotheses. Two
versions:

1 PMBM filters: reduce ]hypotheses to a manageable number.
2 PMB filters: reduce ]hypotheses to one.

Novel techniques:

1 variational merging: enables improved merging across
different tracks (similar to SJPDA).

2 recycling: low-probability Bernoullis approximated as Poisson.
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PMBM recursions

Why use a conjugate prior? (; tractability)

1 PMBMs can approximate true posterior arbitrarily well by
maintaining many hypotheses.

2 The best PMB is better than the best cluster processes in
Kullback-Leibler sense.
(Current proof only valid for point targets).
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Include labels?

Let us try to understand the relation to a labeled approach.

Can we augment our state with an implicit (unobservable)
label? Yes, this does not change the above results.

However, to obtain reasonable labels we should make sure that:

1 birth process generates unique labels,
2 labels do not change with time.

Birth process?

1 labeled Poisson ⇒ may yield total mixed labeling already at
birth,

2 labeled multi-Bernoulli can avoid this problem.

Both (labeled) MBM and (labeled) PMBM are conjugate priors for
this birth process.
Why is MBM a conjugate prior?
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MB prediction

Let us illustrate the prediction and update for a MB.

Prediction events:

1 existing targets may move,
2 or die (disappear),
3 new targets may arrive: MB birth process.

Previous posterior, p(xk−1
∣∣Zk−1):
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Predicted density, p(xk
∣∣Zk−1):

The MB birth creates new tracks at pre-defined locations.
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MB prediction

Let us illustrate the prediction and update for a MB.

Prediction events:
1 existing targets may move,

2 or die (disappear),
3 new targets may arrive: MB birth process.

Previous posterior, p(xk−1
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The MB birth creates new tracks at pre-defined locations.
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MB prediction

Let us illustrate the prediction and update for a MB.

Prediction events:
1 existing targets may move,
2 or die (disappear),

3 new targets may arrive: MB birth process.

Previous posterior, p(xk−1
∣∣Zk−1):
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MB prediction

Let us illustrate the prediction and update for a MB.

Prediction events:
1 existing targets may move,
2 or die (disappear),
3 new targets may arrive: MB birth process.

Previous posterior, p(xk−1
∣∣Zk−1):
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The MB birth creates new tracks at pre-defined locations.
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LMBM update

The MB contains Bernoulli components that we often call tracks.
Suppose we have n tracks (n = 2 in illustrations).

Update step:
For each measurements we have n + 1
hypotheses:

1 For i = 1, 2, . . . , n: measurement was
generated by track i . ⇒ ri = 1.

2 Measurement is clutter.
⇒ no new tracks! 0 1 2 3 4 5 6
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Note 1: update is identical to PMBM with λ(x) = 0.

Note 2: no new tracks during update.
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δ-GLMB

As you have seen, labels can be handled using LMBM, which is
essentially a special case of a PMBM.

However, the standard conjugate prior for labelled RFS is the
δ-GLMB distribution.

Yet another conjugate prior? Not really.

The δ-GLMB is a special type of LMBM where all existence
probabilities are 0 or 1.
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δ-GLMB

How can we restrict the existence probabilities to r ∈ {0, 1}?
By creating more hypotheses!

Suppose posterior at time k − 1 and is an LMB with r = 1 for all
Bernoulli components.

After prediction, their existence probabilities are Ps , but we can also
express this using 2n hypotheses with rij ∈ {0, 1}:

An LMBM representation:
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A δ-GLMB representation:
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δ-GLMB and LMB algorithms

Two popular algorithms for labeled MTF are:

1 the δ-GLMB filter: maintains several/many hypotheses; all
correspond to LMBs with r ∈ {0, 1}.

2 the LMB filter: reduces the δ-GLMB posterior to a single
LMB with general existence probabilities.
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Conjugate priors: summary

PMBM, LMBM and δ-GLMB are all conjugate priors for MTF.

Conjugate priors are useful to develop powerful algorithms.

Using a Poisson birth process and a PMBM posterior has several
advantages:

1 tracks are initiated by measurements,
2 fewer hypotheses,
3 enables recycling (approximating low-probability tracks as

Poisson).
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Bayesian statistics and outline

In Bayesian statistics:

we compute posterior
densities of, x ,

posterior density summarizes
what we know about x ,

Very useful! E.g., can
compute optimal estimates. x

prior

posterior

likelihood

Outline:

1) Sets of trajectories: suitable x in MTT and MTF?
Which are our quantities of interest?

2) Conjugate prior densities: reasonable priors and likelihoods to obtain
tractable posteriors?

3) Metrics: how can we measure performance in MTT and MTF?
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Metrics

Metrics are useful to
1 evaluate performance of algorithms,
2 derive optimal estimators.

We have developed metrics for MTF and MTT.

1) Generalized OSPA: a metric for MTF, i.e., a metric between sets
of targets.

GOSPA paper received best
paper award at Fusion, 2017,

YouTube video where the
paper is carefully explained.

2) A metric for MTT, i.e., a metric between sets of trajectories.

Trajectory version of GOSPA
that also penalizes “track
switches”.
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Generalised OSPA (GOSPA)

What is GOSPA?
A metric on sets of targets, useful to evaluate performance and
design estimators.
An alternative to OSPA!

Informal definition

GOSPA = localisation error +
c

2
(]missed targets + ]false targets)

Why GOSPA instead of OSPA?

We often want few false and
missed targets.
 GOSPA measures this,
OSPA doesn’t

x
xo

o

o

detected
missed

false

false

Figure: Detected, missed and false
targets

x-truth, o-estimate
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How to compute GOSPA?

Computing GOSPA (α = 2, p = 1):

1) Find optimal assignments between sets.
Remark 1: pairs are left unassigned if
d(x , y) > c .
Remark 2: we refer to unassigned elements as
false/missed targets.

2) Assigned pairs cost d(x , y).

3) Unassigned elements cost c/2.

x
xo

o

o

detected
missed

false

false

Formal definition, GOSPA, α = 2min
γ∈Γ

 ∑
(i ,j)∈γ

d(xi , yj)
p +

cp

2

|X | − |γ|︸ ︷︷ ︸
]missed

+ |Y | − |γ|︸ ︷︷ ︸
]false





1
p

where X : set of targets, Y : set of estimates and Γ : set of possible
assignments.
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Application of GOSPA

The GOSPA metric is a sum of three terms:

GOSPA = local. error +
c

2
(]missed targets + ]false targets)

In [Xia2017]2, the performance of different multi-Bernoulli
filters evaluated using GOSPA.

δ generalised labelled multi-Bernoulli (δ GLMB)
Labelled multi-Bernoulli (LMB)
Poisson multi-Bernoulli mixture (PMBM)
Poisson multi-Bernoulli (PMB)

Scenario
Challenging scenario involving six targets in close proximity at
the mid-point of the simulation.

2Xia et. al, ”Performance Evaluation of Multi-Bernoulli Conjugate Priors for
Multi-Target Filtering”, 20th Inter. Conf. on Information Fusion, July 2017.
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GOSPA results for challenging scenario

Performance of algorithms compared using GOSPA:
localisation error, # missed and # false targets
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GOSPA clarifies: most errors are due to missed targets!
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Extended target tracking

Scenario3: Two extended targets are well separated, but move
closer to each other before they separate again.

PMBM achieves the lowest GOSPA.
The PMBM is much faster than δ-GLMB, but slower than LMB.

3Granström, K., et. al, ’Poisson multi-Bernoulli conjugate prior for multiple
extended object estimation”. arxiv.org/abs/1605.06311.

Chalmers University of Technology Tools for MTT and MTF L. Svensson

arxiv.org/abs/1605.06311


Further Reading I

Part I: sets of trajectories

L. Svensson and M. Morelande,
“Target tracking based on estimation of sets of trajectories”
in in Proc. 17th International Conference on Information Fusion,
July 2014.

A. F. García-Fernández, L. Svensson and M. Morelande,
“Multiple target tracking based on sets of trajectories”
arXiv pre-print. [Online]. Available: arxiv.org/abs/1605.08163.

A. F. García-Fernández and L. Svensson,
“Trajectory probability hypothesis density filter”
arXiv pre-print. [Online]. Available: arxiv.org/abs/1605.07264.

Chalmers University of Technology Tools for MTT and MTF L. Svensson

arxiv.org/abs/1605.08163
arxiv.org/abs/1605.07264


Further Reading II
Random finite sets (RFSs) and labelled RFSs

R. Mahler.
Statistical Multisource-Multitarget Information Fusion.
Artech House, Inc., 2007.

B. T. Vo and B. N. Vo,
“Labeled random finite sets and multi-object conjugate priors”
IEEE Transactions on Signal Processing, 61(13), 2013.

B. N. Vo, B. T. Vo and D. Phung,
“Labeled random finite sets and the Bayes multi-target tracking
filter”
IEEE Transactions on Signal Processing, 62(24), 2014.

S. Reuter, B. T. Vo, B. N. Vo and K. Dietmayer,
“The labeled multi-Bernoulli filter”
IEEE Transactions on Signal Processing, 62(12), 2014.

Chalmers University of Technology Tools for MTT and MTF L. Svensson



Further Reading III
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