Set of trajectories, conjugate priors and metrics

Lennart Svensson

Signal Processing group Chalmers University of Technology, Sweden

Joint work with Ángel García-Fernández, Mark Morelande, Karl Granström, Jason Williams, Abu Sajana Rahmathullah, Maryam Fatemi and Yuxuan Xia.

• We consider two closely related problems¹:

Multi-target tracking (MTT)

In MTT, the objective is to estimate **target trajectories**, including when targets appear and disappear.

Multi-target filtering (MTF)

In MTF, the objective is to estimate states of **targets** that are **currently present**.

¹Ristic, B. et al, "A metric for performance evaluation of multi-target tracking algorithms", *IEEE Trans. of Sign. Proc.*, 59(7), 2011.

CHALMERS Chalmers University of Technology

Tools for MTT and MTF

Why multi-target tracking (MTT)?

MTT is important in many contexts:

- Airport/domestic surveillance:
 - e.g., to analyze who dropped the bag by the entrance.
- Trajectory information can provide information about:
 - properties of cells,
 - object types
 (birds/UAVs/...)
 - how much a football player runs.

From goo.gl/sckyBQ.

• Standard MTT models for point objects:

Objective

• Estimate trajectories from sequence of detections.

- Standard MTT models for point objects:
- Targets move and may appear/disappear with time.
- Measurements:
 - 0/1 detections per target,
 - possibly also false detections,
 - unknown associations targets-detections.

Objective

• Estimate trajectories from sequence of detections.

- Standard MTT models for point objects:
- Targets move and may appear/disappear with time.
- Measurements:
 - 0/1 detections per target,
 - possibly also false detections,
 - unknown associations targets-detections.

Objective

• Estimate trajectories from sequence of detections.

- Standard MTT models for point objects:
- Targets move and may appear/disappear with time.
- Measurements:
 - 0/1 detections per target,
 - possibly also false detections,
 - unknown associations targets-detections.

Objective

• Estimate trajectories from sequence of detections.

Why multi-target tracking (MTF)?

- We work with self-driving vehicles:
 - estimate states of nearby road users,
 - enables us to avoid collisions,
 - target trajectories often not important.

- Other applications include positioning of
 - airplanes,
 - a human cells,
 - space debris.

- Identical models for MTT and MTF!
- Standard models for point objects:
- Targets move and may appear/disappear with time.
- Measurements:
 - 0/1 detections per target,
 - possibly also false detections,
 - unknown associations targets-detections.

Objective

- Identical models for MTT and MTF!
- Standard models for point objects:
- Targets move and may appear/disappear with time.
- Measurements:
 - 0/1 detections per target,
 - possibly also false detections,
 - unknown associations targets-detections.

Objective

- Identical models for MTT and MTF!
- Standard models for point objects:
- Targets move and may appear/disappear with time.
- Measurements:
 - 0/1 detections per target,
 - possibly also false detections,
 - unknown associations targets-detections.

Objective

- Identical models for MTT and MTF!
- Standard models for point objects:
- Targets move and may appear/disappear with time.
- Measurements:
 - 0/1 detections per target,
 - possibly also false detections,
 - unknown associations targets-detections.

Objective

- Identical models for MTT and MTF!
- Standard models for point objects:
- Targets move and may appear/disappear with time.
- Measurements:
 - 0/1 detections per target,
 - possibly also false detections,
 - unknown associations targets-detections.

Objective

• Estimate current target states from sequence of detections.

MTT and MTF solutions?

• How to approach MTT and MTF?

• Most attempts are **Bayesian**:

- optimal trade-off between information

about realistic trajectories,
 from measurements.

- gives a posterior density \Rightarrow we can compute

probabilities of different events,

 optimal decisions/estimates (e.g., MMSE).

In Bayesian statistics:

- we compute posterior densities of, x,
- posterior density summarizes what we know about x,
- Very useful! E.g., can compute optimal estimates.

In Bayesian statistics:

- we compute posterior densities of, x,
- posterior density summarizes what we know about x,
- Very useful! E.g., can compute optimal estimates.

Outline:

1) **Sets of trajectories**: suitable x in MTT and MTF? Which are our quantities of interest?

In Bayesian statistics:

- we compute posterior densities of, x,
- posterior density summarizes what we know about x,
- Very useful! E.g., can compute optimal estimates.

Outline:

- 1) **Sets of trajectories**: suitable x in MTT and MTF? Which are our quantities of interest?
- 2) **Conjugate prior densities**: reasonable priors and likelihoods to obtain tractable posteriors?

In Bayesian statistics:

- we compute posterior densities of, x,
- posterior density summarizes what we know about x,
- Very useful! E.g., can compute optimal estimates.

Outline:

- Sets of trajectories: suitable x in MTT and MTF? Which are our quantities of interest?
- 2) **Conjugate prior densities**: reasonable priors and likelihoods to obtain tractable posteriors?
- 3) Metrics: how can we measure performance in MTT and MTF?

- Target states: (for a single target)
 - are denoted x_k where k is our time index.
 - often contain position, velocity, etc.
 - may also contain other properties: color, age, size, etc.

• Measurements:

- $\mathbf{z}^k = \{z_1^k, z_2^k, \dots, \}$ is the set of measurements at time k.
- Z^k = (z¹,..., z^k) denotes the sequence of measurements up to and including time k.

• MTF: the set of target states is a suitable state

$$\mathbf{x}^{k} = \left\{ x_{1}^{k}, x_{2}^{k}, \dots, x_{n_{k}}^{k} \right\}$$

where n_k is \sharp targets present at time k.

Objective in MTF

Recursively compute $p(\mathbf{x}^k | \mathbf{Z}^k)$.

CHALMERS Chalmers University of Technology

Tools for MTT and MTF

• Why is

$$\mathbf{x}^k = \left\{ x_1^k, x_2^k, \dots, x_{n_k}^k \right\}$$

a suitable state?

x^k captures/is our quantity of interest,
 x^k is a minimal representation:

 $\mathbf{x}^k \stackrel{1-1}{\longleftrightarrow}$ physical quantities of interest.

• We can use conjugate priors (see 2nd part) to recursively approximate

 $p(\mathbf{x}^k | \mathbf{Z}^k)$

using PMB and PMBM filters.

- Many other filters have also been developed, including
 - Probability Hypothesis Density (PHD)
 - 2 Cardinalized PHD (CPHD)

filters.

• This state representation can also be used to motivate Multiple Hypothesis Tracking (MHT) algorithms from a Bayesian perspective.

• Why not use, e.g., an ordered vector $\tilde{\mathbf{x}}^k = [x_1^k, x_2^k, \dots, x_{n_k}^k]?$

The ordering

- does not convey relevant information,
- 2 cannot (generally) be inferred from physical reality.

- Both the transition model and posterior would need to handle uncertainties in the ordering
 - \rightsquigarrow arbitrary choices and irrelevant uncertainties!

• MTT: we argue that the set of trajectories is a suitable state

$$\mathbf{X}^{k} = \left\{X_{1}^{k}, X_{2}^{k}, \ldots, X_{N_{k}}^{k}\right\},\,$$

where X_i^k is a trajectory and N_k is \sharp targets present until time k.

- We denote trajectories as $X = (t, x^{1:i})$, where
 - t: start time,
 - *i* duration,

• $x^{1:i} = (x^1, x^2, \dots, x^i)$ sequence of target states.

- Note: three possible trajectory types during prediction:
 - persist/survive: extended by including the new state at the end of the trajectory.
 - ended/dead: remain the same.
 - 3 newly born: obtain a trajectory $X = (k, x^k)$.
- Trajectories are never removed from the set.

- Note: three possible trajectory types during prediction:
 - persist/survive: extended by including the new state at the end of the trajectory.
 - ended/dead: remain the same.
 - 3 newly born: obtain a trajectory $X = (k, x^k)$.
- Trajectories are never removed from the set.

Objective in MTT Recursively compute $p(\mathbf{X}^{k}|\mathbf{Z}^{k})$.

CHALMERS Chalmers University of Technology

Tools for MTT and MTF

- Note: three possible trajectory types during prediction:
 - persist/survive: extended by including the new state at the end of the trajectory.
 - ended/dead: remain the same.
 - 3 newly born: obtain a trajectory $X = (k, x^k)$.
- Trajectories are never removed from the set.

Objective in MTT

Recursively compute $p(\mathbf{X}^k | \mathbf{Z}^k)$.

CHALMERS Chalmers University of Technology

Tools for MTT and MTF

- Note: three possible trajectory types during prediction:
 - persist/survive: extended by including the new state at the end of the trajectory.
 - ended/dead: remain the same.
 - **(3)** newly born: obtain a trajectory $X = (k, x^k)$.
- Trajectories are never removed from the set.

Objective in MTTRecursively compute $p(\mathbf{X}^k | \mathbf{Z}^k)$.

CHALMERS Chalmers University of Technology

Tools for MTT and MTF

- Note: three possible trajectory types during prediction:
 - persist/survive: extended by including the new state at the end of the trajectory.
 - ended/dead: remain the same.
 - 3 newly born: obtain a trajectory $X = (k, x^k)$.
- Trajectories are never removed from the set.

Objective in MTT Recursively compute $p(\mathbf{X}^{k}|\mathbf{Z}^{k})$.

CHALMERS Chalmers University of Technology

Tools for MTT and MTF

• Why is

$$\mathbf{X}^k = \left\{X_1^k, X_2^k, \dots, X_{n_k}^k\right\}$$

a suitable state?

X^k captures/is our quantity of interest,
 X^k is a minimal representation:

 $\mathbf{X}^k \xleftarrow{}{}^{\mathbf{1} - \mathbf{1}}$ physical quantities of interest.

- One can use **conjugate priors for sets of trajectories** to develop algorithms.
- For standard models, the result resembles MHT:
 - hypothesis trees that grow rapidly,
 - 2 merge/prune branches to reduce complexity.

• **Complexity**?

- Suppose we are given a data association hypothesis, θ .
- To compute p(X^k | Z^k, θ) we should smooth our estimates at all times, 1, 2, ..., k. Unfeasible!
- In practice, we often only update estimates for last *L* steps, $k L + 1, \ldots, k$, where *L* is a design variable.

Example: standard measurement model

• Each target produces a noisy measurement with a probability of detection. There is additional clutter.

TPHD: a PHD filter for trajectories

- One can also use sets of trajectories to extend the PHD filter to trajectories.
- Idea: recursively approximate p(X^k | Z^k) as a Poisson multitrajectory PDF,

$$\nu(\{X_1,\ldots,X_N\})=e^{-\lambda_{\nu}}\lambda_{\nu}^N\prod_{i=1}\check{\nu}(X_i).$$

• Scenario and results assuming standard model for point targets:

• The algorithm efficiently estimates trajectories in a principled manner.

CHALMERS Chalmers University of Technology

Labeled sets as state

- Another approach to MTT is to use sets of labelled target states
 - append target states with a static label, ℓ ,

$$\tilde{x} = (x, \ell).$$

- two targets cannot share the same label,
- normally, labels lack physical interpretation and are unobservable,
- $\mathbf{x}^k = { \tilde{x}_1^k, \dots, \tilde{x}_{n_k}^k }$ is used as state variable.

- Labels enable us to connect state estimates across time.
- Labels are arbitrary; we could replace ○ with ◊ and □ with ○ without changing trajectories.

Labeled sets and trajectories

• A sequence of sets of labeled states (left figure) fully describe a set of trajectories (right figure).

• However, labels are arbitrary

 $(\mathbf{x}^1, \dots, \mathbf{x}^k) \stackrel{1-1}{\nleftrightarrow}$ physical quantities of interest.

In theory, one could compute p(x¹, x²,..., x^k | Z^k), but this is essentially a more involved version of p(X^k | Z^k).

Labeled sets and trajectory estimates

• Standard approach: recursively compute

 $p(\mathbf{x}^k | \mathbf{Z}^k),$

and extract estimates $\hat{\mathbf{x}}^k$.

- In many cases, this yields reasonable estimates.
- In simple scenarios, it resembles approximating $p(\mathbf{X}^k | \mathbf{Z}^k)$ and use L = 1 in that there is no smoothing.
- However, let us look at these marginal densities

$$p(\mathbf{x}^1 | \mathbf{Z}^1), p(\mathbf{x}^2 | \mathbf{Z}^2), \dots, p(\mathbf{x}^k | \mathbf{Z}^k),$$

in a more challenging example.
• Toy example: Suppose we are tracking two people, who occasionally meet to chat together. Labels are ±1 at *k* = 1.

• **k=1:**
$$\Pr[\mathbf{x}^1 = \{(+5, +1), (-5, -1)\}] = 1$$

• **k=6**: we are now confused about labels $Pr[\mathbf{x}^6 = \{(+5, +1), (-5, -1)\}] =$ $Pr[\mathbf{x}^6 = \{(+5, -1), (-5, +1)\}] = 0.5.$

• Are label uncertainties/mixed labeling a problem?

CHALMERS Chalmers University of Technology

• Toy example: Suppose we are tracking two people, who occasionally meet to chat together. Labels are ±1 at *k* = 1.

• **k=1:**
$$\Pr[\mathbf{x}^1 = \{(+5, +1), (-5, -1)\}] = 1$$

• **k=6**: we are now confused about labels $Pr[\mathbf{x}^6 = \{(+5,+1), (-5,-1)\}] =$ $Pr[\mathbf{x}^6 = \{(+5,-1), (-5,+1)\}] = 0.5.$

• Are label uncertainties/mixed labeling a problem?

Chalmers University of Technology

• Toy example: Suppose we can tell that the persons do not move from time 6 to 10.

• What do we know about the labels at time 10?

• Toy example: Suppose we can tell that the persons do not move from time 6 to 10.

- What do we know about the labels at time 10?
- Still equally confused about labels:

$$\Pr[\mathbf{x}^{10} = \{(+5, +1), (-5, -1)\}] = \Pr[\mathbf{x}^{10} = \{(+5, -1), (-5, +1)\}] = 0.5.$$

• Toy example: Suppose we can instead tell that the persons change place from time 6 to 10.

• What do we know about the labels at time 10?

• Toy example: Suppose we can instead tell that the persons change place from time 6 to 10.

- What do we know about the labels at time 10?
- Still equally uncertain about labels:

$$\mathsf{Pr}[\mathbf{x}^{10} = \{(+5, +1), (-5, -1)\}] = \mathsf{Pr}[\mathbf{x}^{10} = \{(+5, -1), (-5, +1)\}] = 0.5.$$

Conclusions?

- Trajectories are assumed known from time 6 to 10.
- Still, $p(\mathbf{x}^{10}|\mathbf{Z}^{10})$ is identical for static and crossing trajectories. $\Rightarrow p(\mathbf{x}^{6}|\mathbf{Z}^{6})$ and $p(\mathbf{x}^{10}|\mathbf{Z}^{10})$ provide no information about how to "connect the dots".
- In fact, once we have "total mixed labeling", a labeled set contains as much trajectory information as an unlabeled set.
- Using sets of trajectories, we are able to tell if they stayed in the same place or not.

Label uncertainties: remark

• Note that trajectory information is often important and non-trivial to extract.

Label uncertainties: birth process

• Appearing targets are modeled using a birth process, and label **uncertainties** may arise already **at target birth**.

Example:

- Imagine tracking two people who enter a room together.
- In many cases, this leads to mixed labeling, even when trajectories can be estimated accurately.

• Poisson processes are commonly used birth processes, but the density of a labeled Poisson RFS satisfies, e.g.,

$$\pi(\{(x_1,\ell_1)(x_2,\ell_2)\}) = \pi(\{(x_1,\ell_2)(x_2,\ell_1)\}),$$

which **leads to mixed labeling** when two targets appear simultaneously, even if they are far apart.

Sets of trajectories: concluding remarks

• MTT: we argue that the set of trajectories is a suitable state

$$\mathbf{X}^{k} = \left\{X_{1}^{k}, X_{2}^{k}, \ldots, X_{N_{k}}^{k}\right\},\,$$

where X_i^k is a trajectory.

- **(1)** \mathbf{X}^k is our quantity of interest,
- **2** \mathbf{X}^k is a minimal representation:

 $\mathbf{X}^k \xleftarrow{}{}^{1-1}$ physical quantities of interest.

Objective

Compute

$$p(\mathbf{X}^k | \mathbf{Z}^k).$$

That is, compute posterior density of our quantity of interest.

- Sets of trajectories, **X**^k, enable
 - Development of novel algorithms, e.g., TPHD.
 - Straightforward extraction of trajectory information in a fully Bayesian manner.

Bayesian statistics and outline

In Bayesian statistics:

- we compute posterior densities of, x,
- posterior density summarizes what we know about x,
- Very useful! E.g., can compute optimal estimates.

Outline:

- 1) Sets of trajectories: suitable x in MTT and MTF? Which are our quantities of interest?
- 2) **Conjugate prior densities**: reasonable priors and likelihoods to obtain tractable posteriors?
- 3) Metrics: how can we measure performance in MTT and MTF?

Things to model:

• Prior:

target birth
 target motion and death

• Likelihood:

target detections
 false detections.

• Key components: multi-Bernoulli (MB) and Poisson processes.

Bernoulli processes

Definition: Bernoulli

• **x** is Bernoulli random finite set (RFS) if

$$p(\mathbf{x}) = \begin{cases} 1 - r & \text{if } \mathbf{x} = \emptyset \\ r p_1(x) & \text{if } \mathbf{x} = \{x\}, \end{cases}$$
that is, it can only contain zero or one object states

• Here, r is an existence probability and $p_1(x)$ is a density.

multi-Bernoulli processes

Things MBs can model:

- Set of target detections, conditioned on the set of targets.
- Posterior distribution of targets.
- Distribution of appearing targets; the birth process.

multi-Bernoulli mixture (MBM) processes

• If $f_{ij}(\mathbf{x}_j)$ are Bernoulli densities, then

$$f_i^{mb}(\mathbf{x}) = \sum_{\mathbf{x}_1 \uplus \cdots \uplus \mathbf{x}_n = \mathbf{x}} \prod_{j=1}^n f_{ij}(\mathbf{x}_j)$$

is a MB density. **Models:** *n* potential targets (tracks).

• x is a MBM RFS if its density is

$$f^{\mathrm{mbm}}(\mathbf{x}) = \sum_{i} w_i f_i^{mb}(\mathbf{x}),$$

where $\sum_{i} w_i = 1$. **Models:**

- *w_i* probability of data association hypothesis *i*
- f^{mb}_i(x): distribution of potential targets given *i*th hypothesis.

CHALMERS Chalmers University of Technology

Tools for MTT and MTF

Definition: Poisson processes

• **x** is Poisson RFS with intensity $\lambda(x)$ if

$$p(\mathbf{x}) = exp\left[-\int \lambda(x) \,\mathrm{d}x\right] \prod_{x \in \mathbf{x}} \lambda(x)$$

• Interesting properties:

- We can generate x = {x₁,...,x_n} ~ p(x) by
 i) generating n ~ Poisson(λ̄)
 ii) generating x₁,...,x_n ~ λ(x)/λ
 where λ̄ = ∫ λ(x) dx.
- ② If A and B are two disjoint regions, x ∩ A and x ∩ B are independent Poisson processes.

Poisson processes

Definition: Poisson processes

• **x** is Poisson RFS with intensity $\lambda(x)$ if

$$p(\mathbf{x}) = exp\left[-\int \lambda(x) \,\mathrm{d}x\right] \prod_{x \in \mathbf{x}} \lambda(x)$$

Things a Poisson RFS can model:

- Set of false detections (clutter measurements).
- Distribution of appearing targets; the birth process.
- Set of target detections from a single extended target.

Example:

$$\lambda(x) = 1.3\mathcal{N}(x;\mu_1,P_1) + 0.9\mathcal{N}(x;\mu_2,P_2)$$

Filtering recursions

Objective in MTF

Recursively compute $p(\mathbf{x}^k | \mathbf{Z}^k)$.

• Most Bayesian filters rely on prediction and update steps:

Another key property

• $p(\mathbf{x}_{k-1} | \mathbf{Z}^{k-1})$ and $p(\mathbf{x}^k | \mathbf{Z}^k)$ are the same type of density \Rightarrow we (may) have a recursive algorithm!

• Example: in a Kalman filter, both $p(\mathbf{x}^{k-1}|\mathbf{Z}^{k-1})$ and $p(\mathbf{x}^{k}|\mathbf{Z}^{k})$ are Gaussian.

Filtering recursions

Standard approach to filtering

- Select a density parameterization $p(\mathbf{x}; \boldsymbol{\theta})$.
- 2 Start from

$$p(\mathbf{x}^{k-1}|\mathbf{Z}^{k-1}) \approx p(\mathbf{x}^{k-1}; \boldsymbol{\theta}_{k-1|k-1})$$

and find $\theta_{k|k}$ such that

$$p(\mathbf{x}^k | \mathbf{Z}^k) \approx p(\mathbf{x}^k; \boldsymbol{\theta}_{k|k}).$$

•
$$p(\mathbf{x}; \boldsymbol{\theta}) = \mathcal{N}(\mathbf{x}; \boldsymbol{\mu}, \mathbf{P})$$

KF, EKF, UKF, CKF, PDA, NN, GNN, PDA, JPDA.

•
$$p(\mathbf{x}; \boldsymbol{\theta}) = \sum_{i=1}^{N} w^{(i)} \delta(\mathbf{x} - \mathbf{x}^{(i)})$$

Particle filters.

• What is a suitable parameterization $p(\mathbf{x}; \theta)$ for MTF?

• In MTF and MTT we can use conjugate priors.

Conjugate priors in multi-object filtering

A family of distributions, $\{p(\mathbf{x}; \theta)\}_{\theta}$ is conjugate (to certain motion and measurement models) if

$$p(\mathbf{x}^{k-1} | \mathbf{Z}^{k-1}) = p(\mathbf{x}^{k-1}; \theta_{k-1|k-1})$$

$$\Rightarrow \exists \theta_{k|k-1}, \theta_{k|k} : \begin{cases} p(\mathbf{x}^{k} | \mathbf{Z}^{k-1}) = p(\mathbf{x}^{k}; \theta_{k|k-1}) \\ p(\mathbf{x}^{k} | \mathbf{Z}^{k}) = p(\mathbf{x}^{k}; \theta_{k|k}) \end{cases}$$

- Example: the family of Gaussian densities is conjugate to linear and Gaussian state space models.
- Note 1: conjugate families seem to enable exact filtering.
- Note 2: computing $p(\mathbf{x}^k | \mathbf{Z}^k)$ may still be intractable.

PMBM: a MTF conjugate prior

Poisson multi-Bernoulli mixture (PMBM)

A PMBM is a conjugate prior to standard models for MTF.

That is, if $p(\mathbf{x}^1)$ is a PMBM, so are all future densities $p(\mathbf{x}^k | \mathbf{Z}^{k-1})$ and $p(\mathbf{x}^k | \mathbf{Z}^k)$.

This holds for both point and extended targets.

Definition: PMBM

x is a PMBM RFS if

$$\mathbf{x} = \mathbf{x}_{\mathrm{p}} \uplus \mathbf{x}_{\mathrm{mbm}},$$

5

4 √∾3

0

r₁=0.8

2 3 4

Poisson

r,=0.9

where $\textbf{x}_{\rm p}$ a Poisson RFS and $\textbf{x}_{\rm mbm}$ is an MBM RFS.

• **Poisson**: set of undetected targets.

• MBM: set of detected targets.

Chalmers University of Technology Tools for MTT and MTF

• Poisson intensity increases in occluded areas where we may have undetected objects.

CHALMERS Chalmers University of Technology

Tools for MTT and MTF

- Let us illustrate the prediction and update for a PMB.
- Prediction events:

Previous posterior, $p(\mathbf{x}^{k-1} | \mathbf{Z}^{k-1})$:

Chalmers University of Technology

CHALMERS

- Let us illustrate the prediction and update for a PMB.
- Prediction events:
 - existing targets may move,

Previous posterior, $p(\mathbf{x}^{k-1} | \mathbf{Z}^{k-1})$:

Predicted density, $p(\mathbf{x}^k | \mathbf{Z}^{k-1})$:

Tools for MTT and MTF

CHALMERS Chalmers University of Technology

- Let us illustrate the prediction and update for a PMB.
- Prediction events:

existing targets may move,or die (disappear),

Previous posterior, $p(\mathbf{x}^{k-1}|\mathbf{Z}^{k-1})$:

Chalmers University of Technology

CHALMERS

Predicted density, $p(\mathbf{x}^k | \mathbf{Z}^{k-1})$:

Tools for MTT and MTF

- Let us illustrate the prediction and update for a PMB.
- Prediction events:
 - existing targets may move,
 - or die (disappear),
 - **③** new targets may arrive: Poisson birth process, $\lambda_b(x)$.

Previous posterior, $p(\mathbf{x}^{k-1}|\mathbf{Z}^{k-1})$:

Predicted density, $p(\mathbf{x}^{k} | \mathbf{Z}^{k-1})$:

Chalmers University of Technology

CHALMERS

Tools for MTT and MTF

PMB update

• The MB contains Bernoulli components that we often call tracks. Suppose we have *n* tracks (*n* = 2 in illustrations).

• Update step:

For each measurements we have n + 1 hypotheses:

- For i = 1, 2, ..., n: measurement was generated by track i. ⇒ r_i = 1.
 Measurement was generated by previously undetected target or clutter.
 - \Rightarrow create a new track!

- Note 1: tracks are initiated based on measurements.
- Note 2: posterior is a mixture, due to the many different hypotheses.

PMBM recursions

- Number of hypotheses grows quickly with each update.
- **Basic idea:** use pruning and merging to reduce #hypotheses. Two versions:
 - PMBM filters: reduce #hypotheses to a manageable number.
 PMB filters: reduce #hypotheses to one.

• Novel techniques:

- variational merging: enables improved merging across different tracks (similar to SJPDA).
- **2** recycling: low-probability Bernoullis approximated as Poisson.

- Why use a **conjugate prior**? (⇒ tractability)
 - PMBMs can approximate true posterior arbitrarily well by maintaining many hypotheses.
 - The best PMB is better than the best cluster processes in Kullback-Leibler sense.

(Current proof only valid for point targets).

Include labels?

- Let us try to understand the relation to a labeled approach.
- Can we augment our state with an implicit (unobservable) label? Yes, this does not change the above results.
- However, to obtain reasonable labels we should make sure that:
 - birth process generates unique labels,
 - 2 labels do not change with time.
- Birth process?
 - 1 labeled Poisson \Rightarrow may yield total mixed labeling already at birth.
 - 2 labeled multi-Bernoulli can avoid this problem.
- Both (labeled) MBM and (labeled) PMBM are conjugate priors for this birth process.

Why is **MBM a conjugate prior**?

- Let us illustrate the prediction and update for a MB.
- Prediction events:

Previous posterior, $p(\mathbf{x}^{k-1}|\mathbf{Z}^{k-1})$:

• Let us illustrate the prediction and update for a MB.

• Prediction events:

existing targets may move,

Previous posterior,
$$p(\mathbf{x}^{k-1}|\mathbf{Z}^{k-1})$$
:

Predicted density, $p(\mathbf{x}^k | \mathbf{Z}^{k-1})$:

• Let us illustrate the prediction and update for a MB.

• Prediction events:

existing targets may move,

or die (disappear),

Previous posterior,
$$p(\mathbf{x}^{k-1}|\mathbf{Z}^{k-1})$$
:

Predicted density, $p(\mathbf{x}^k | \mathbf{Z}^{k-1})$:

• Let us illustrate the prediction and update for a MB.

• Prediction events:

- existing targets may move,
- or die (disappear),
- Inew targets may arrive: MB birth process.

Previous posterior, $p(\mathbf{x}^{k-1}|\mathbf{Z}^{k-1})$:

Predicted density, $p(\mathbf{x}^k | \mathbf{Z}^{k-1})$:

IERS Chalmers University of Technology

Tools for MTT and MTF

LMBM update

• The MB contains Bernoulli components that we often call tracks. Suppose we have *n* tracks (*n* = 2 in illustrations).

- Note 1: update is identical to PMBM with $\lambda(x) = 0$.
- Note 2: no new tracks during update.

- As you have seen, labels can be handled using LMBM, which is essentially a special case of a PMBM.
- However, the standard conjugate prior for labelled RFS is the δ -GLMB distribution.
- Yet another conjugate prior? Not really.
- The δ -GLMB is a special type of LMBM where all existence probabilities are 0 or 1.

CHALMERS Chalmers University of Technology

Tools for MTT and MTF
δ -GLMB

CHALMERS

- How can we restrict the existence probabilities to r ∈ {0,1}?
 By creating more hypotheses!
- Suppose posterior at time k 1 and is an LMB with r = 1 for all Bernoulli components.
- After prediction, their existence probabilities are P_s, but we can also express this using 2ⁿ hypotheses with r_{ij} ∈ {0,1}:
- An LMBM representation:

• A δ -GLMB representation:

Chalmers University of Technology

- Two popular algorithms for labeled MTF are:
 - the δ -GLMB filter: maintains several/many hypotheses; all correspond to LMBs with $r \in \{0, 1\}$.
 - **the LMB filter**: reduces the δ-GLMB posterior to a single LMB with general existence probabilities.

CHALMERS Chalmers University of Technology

Tools for MTT and MTF

- PMBM, LMBM and δ -GLMB are all conjugate priors for MTF.
- Conjugate priors are useful to develop powerful algorithms.
- Using a Poisson birth process and a PMBM posterior has several advantages:
 - tracks are initiated by measurements,
 - 2 fewer hypotheses,
 - enables recycling (approximating low-probability tracks as Poisson).

Bayesian statistics and outline

In Bayesian statistics:

- we compute posterior densities of, x,
- posterior density summarizes what we know about x,
- Very useful! E.g., can compute optimal estimates.

Outline:

- 1) Sets of trajectories: suitable x in MTT and MTF? Which are our quantities of interest?
- 2) Conjugate prior densities: reasonable priors and likelihoods to obtain tractable posteriors?
- 3) Metrics: how can we measure performance in MTT and MTF?

Metrics

- Metrics are useful to
 - evaluate performance of algorithms,
 - 2 derive optimal estimators.

We have developed metrics for MTF and MTT.

- 1) Generalized OSPA: a metric for MTF, i.e., a metric between sets of targets.
- GOSPA paper received best paper award at Fusion, 2017,
- YouTube video where the paper is carefully explained.

Generalized optimal sub-pattern assignment metric (GOSPA)

- 2) A metric for MTT, i.e., a metric between sets of trajectories.
- Trajectory version of GOSPA that also penalizes "track switches".

CHALMERS Chalmers University of Technology

Tools for MTT and MTF

Generalised OSPA (GOSPA)

- What is GOSPA?
 - A metric on sets of targets, useful to evaluate performance and design estimators.
 - An alternative to OSPA!

Informal definition GOSPA = localisation error + $\frac{c}{2}$ (#missed targets + #false targets)

- Why GOSPA instead of OSPA?
 - We often want few false and missed targets.
 → GOSPA measures this, OSPA doesn't

Figure: Detected, missed and false targets

```
x-truth, o-estimate
```

Tools for MTT and MTF

How to compute GOSPA?

- Computing GOSPA ($\alpha = 2, p = 1$):
 - Find optimal assignments between sets. *Remark 1:* pairs are left unassigned if *d(x,y) > c. Remark 2:* we refer to unassigned elements as false/missed targets.
 - 2) Assigned pairs cost d(x, y).
 - 3) Unassigned elements cost c/2.

How to compute GOSPA?

- Computing GOSPA ($\alpha = 2, p = 1$):
 - Find optimal assignments between sets. *Remark 1:* pairs are left unassigned if *d(x,y) > c. Remark 2:* we refer to unassigned elements as false/missed targets.
 - 2) Assigned pairs cost d(x, y).
 - 3) Unassigned elements cost c/2.
 - Formal definition, GOSPA, $\alpha = 2$

$$\left[\min_{\gamma\in\Gamma}\left(\sum_{(i,j)\in\gamma}d(x_i,y_j)^p+\frac{c^p}{2}\left(\underbrace{|X|-|\gamma|}_{\#\text{missed}}+\underbrace{|Y|-|\gamma|}_{\#\text{false}}\right)\right)\right]^{\frac{1}{p}}$$

where X : set of targets, Y : set of estimates and Γ : set of possible assignments.

o false
 o false
 × missed
 × detected

• The GOSPA metric is a sum of three terms:

 $GOSPA = local. error + \frac{c}{2} (\#missed targets + \#false targets)$

- In [Xia2017]², the performance of different multi-Bernoulli filters evaluated using GOSPA.
 - δ generalised labelled multi-Bernoulli (δ GLMB)
 - Labelled multi-Bernoulli (LMB)
 - Poisson multi-Bernoulli mixture (PMBM)
 - Poisson multi-Bernoulli (PMB)
- Scenario
 - Challenging scenario involving six targets in close proximity at the mid-point of the simulation.

²Xia et. al, "Performance Evaluation of Multi-Bernoulli Conjugate Priors for Multi-Target Filtering", 20th Inter. Conf. on Information Fusion, July 2017.

CHALMERS Chalmers University of Technology

Tools for MTT and MTF

GOSPA results for challenging scenario

 Performance of algorithms compared using GOSPA: localisation error, # missed and # false targets

δ-GLMB (green), LMB (magenta) PMBM (red), PMB (Murty) (blue)

• GOSPA clarifies: most errors are due to missed targets!

Extended target tracking

- Scenario³: Two extended targets are well separated, but move closer to each other before they separate again.
- PMBM achieves the lowest GOSPA. The PMBM is much faster than δ -GLMB, but slower than LMB.

³Granström, K., et. al, 'Poisson multi-Bernoulli conjugate prior for multiple extended object estimation". arxiv.org/abs/1605.06311.

CHALMERS Chalmers University of Technology

Further Reading I

Part I: sets of trajectories

L. Svensson and M. Morelande,

"Target tracking based on estimation of sets of trajectories" in *in Proc. 17th International Conference on Information Fusion*, July 2014.

- A. F. García-Fernández, L. Svensson and M. Morelande,
 "Multiple target tracking based on sets of trajectories" arXiv pre-print. [Online]. Available: arxiv.org/abs/1605.08163.
- 🔋 A. F. García-Fernández and L. Svensson,

"Trajectory probability hypothesis density filter" arXiv pre-print. [Online]. Available: arxiv.org/abs/1605.07264.

Further Reading II

Random finite sets (RFSs) and labelled RFSs

R. Mahler.

Statistical Multisource-Multitarget Information Fusion. Artech House, Inc., 2007.

B. T. Vo and B. N. Vo.

"Labeled random finite sets and multi-object conjugate priors" *IEEE Transactions on Signal Processing*, 61(13), 2013.

B. N. Vo, B. T. Vo and D. Phung,

"Labeled random finite sets and the Bayes multi-target tracking filter"

IEEE Transactions on Signal Processing, 62(24), 2014.

S. Reuter, B. T. Vo, B. N. Vo and K. Dietmayer, "The labeled multi-Bernoulli filter"

IEEE Transactions on Signal Processing, 62(12), 2014.

Part II: conjugate prior densities

J. L. Williams,

"Marginal multi-bernoulli filters: RFS derivation of MHT, JIPDA, and association-based member"

IEEE Transactions on Aerospace and Electronic Systems, 51(13), 2015.

J. L. Williams,

"An efficient, variational approximation of the best fitting multi-Bernoulli filter"

IEEE Transactions on Signal Processing, 63(1), 2015.

J. L. Williams,

"Hybrid Poisson and multi-Bernoulli filters"

in *in Proc. 15th International Conference on Information Fusion*, July 2012.

Further Reading IV

🔋 K. Granström, M. Fatemi and L. Svensson,

"Poisson multi-Bernoulli conjugate prior for multiple extended object estimation"

arXiv pre-print. [Online]. Available: arxiv.org/abs/1703.04264.

K. Granström, M. Fatemi and L. Svensson,

"Gamma Gaussian inverse-Wishart Poisson multi-Bernoulli filter for extended target tracking"

in *in Proc. 19th International Conference on Information Fusion*, 2016.

M. Fatemi, et al.,

"Poisson Multi-Bernoulli Mapping Using Gibbs Sampling" *IEEE Transactions on Signal Processing*, 65(11), 2017.

Further Reading V

A. F. García-Fernández, J. Williams, K. Granström and L. Svensson,

"Poisson multi-Bernoulli mixture filter: direct derivation and implementation"

arXiv pre-print. [Online]. Available: arxiv.org/abs/1703.04264.

Y. Xia, K. Granström, L. Svensson and A. F. García-Fernández, "Performance Evaluation of Multi-Bernoulli Conjugate Priors for Multi-Target Filtering"

in *in Proc. 20th International Conference on Information Fusion*, July 2017.

Further Reading VI

Part III: metrics

- A. S. Rahmathullah, A. F. García-Fernández and L. Svensson, "Generalized optimal sub-pattern assignment metric" in *in Proc. 20th International Conference on Information Fusion*, July 2017.
 - A. S. Rahmathullah, A. F. García-Fernández and L. Svensson,

"A metric on the space of finite sets of trajectories for evaluation of multi-target tracking algorithms"

arXiv pre-print. [Online]. Available: arxiv.org/abs/1605.01177.