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@ We consider two closely related problems!:

Multi-target tracking (MTT)

In MTT, the objective is to estimate target trajectories, including
when targets appear and disappear.

Multi-target filtering (MTF)

In MTF, the objective is to estimate states of targets that are
currently present.

!Ristic, B. et al, “A metric for performance evaluation of multi-target
tracking algorithms”, IEEE Trans. of Sign. Proc., 59(7), 2011.
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MTT is important in many contexts:

@ Airport/domestic surveillance:

— e.g., to analyze who
dropped the bag by the
entrance.

@ Trajectory information can
provide information about:

— properties of cells,

— object types
(birds/UAVs/. . .)

— how much a football
player runs.

From goo.gl/sckyBQ.
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@ Standard MTT models for point objects:

— Targets move and may

appear/disappear with time. o target states

state
— Measurements: * measurements
@ 0/1 detections per target, 2
@ possibly also false ) .
detections, .

© unknown associations
targets—detections.

time

—
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Objective J

@ Estimate trajectories from sequence of detections.
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@ Standard MTT models for point objects:
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@ We work with self-driving
vehicles:

— estimate states of nearby
road users,

— enables us to avoid
collisions,

— target trajectories often
not important.

@ Other applications include positioning of

© airplanes,
@ human cells,
© space debris.
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@ ldentical models for MTT and MTF!
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@ Estimate current target states from sequence of detections.
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@ ldentical models for MTT and MTF!

@ Standard models for point objects:

— Targets move and may
appear/disappear with time.

state o target states
— Measurements: * measurements
@ 0/1 detections per target, 2 . -
@ possibly also false . .
detections, .
© unknown associations : : , — time
. | 1 2 3 2 ®
targets—detections.
Objective

@ Estimate current target states from sequence of detections.
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@ How to approach MTT and MTF?

@ Most attempts are Bayesian:

* True states

— optimal trade-off between information - Measurements
—+ Filter estimates

© about realistic trajectories,
@ from measurements.

SRR
— gives a posterior density
= we can compute oo \\,’;’
© probabilities of different events, I\\ = ;
@ optimal decisions/estimates (e.g., R I T e e 1

MMSE). 1
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In Bayesian statistics:

. osterior
@ we compute posterior —F
densities of, x,

@ posterior density summarizes

what we know about x, likelihood
—

@ Very usefull E.g., can
compute optimal estimates.
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In Bayesian statistics:

. osterior
@ we compute posterior —F
densities of, x,

@ posterior density summarizes

what we know about x, likelihood
—

@ Very usefull E.g., can
compute optimal estimates.

Qutline:

1) Sets of trajectories: suitable x in MTT and MTF?
Which are our quantities of interest?
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2) Conjugate prior densities: reasonable priors and likelihoods to
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In Bayesian statistics:

. osterior
@ we compute posterior —F
densities of, x,

@ posterior density summarizes

what we know about x, likelihood
—

@ Very usefull E.g., can
compute optimal estimates.

Qutline:

1) Sets of trajectories: suitable x in MTT and MTF?
Which are our quantities of interest?

2) Conjugate prior densities: reasonable priors and likelihoods to
obtain tractable posteriors?

3) Metrics: how can we measure performance in MTT and MTF?
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e Target states: (for a single target)

o are denoted x, where k is our time index.
e often contain position, velocity, etc.

e may also contain other properties: color, age, size, etc.

@ Measurements:

o zM={z{,z}, ..., } is the set of measurements at time k.

o ZK = (zl, R ,zk) denotes the sequence of measurements up
to and including time k.
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o MTF: the set of target states is a suitable state

k _ k k k
X *{X17X2>-~7Xnk}

where ny is ftargets present at time k.

o target states

state
o Example: * measurements
x> ={1.3, 1.8} 2 '
n3 = 2. 1 - . :
1 3 3 4 5 tme
Objective in MTF
Recursively compute p(xk‘Zk). J
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@ Why is

k_ [k k K
X 7{x1,x2,...,xnk

a suitable state?

@ x* captures/is our quantity of interest,
@ x¥ is a minimal representation:

x¥ &% physical quantities of interest.

state
e target states
@ Example:
2 o
x> ={1.3,1.8} . .
n3 = 2.

i . . T - T time
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@ We can use conjugate priors (see 2nd part) to recursively

approximate
p(x*[Z")

using PMB and PMBM filters.

@ Many other filters have also been developed, including

@ Probability Hypothesis Density (PHD)
@ Cardinalized PHD (CPHD)

filters.

@ This state representation can also be used to motivate Multiple
Hypothesis Tracking (MHT) algorithms from a Bayesian perspective.
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@ Why not use, e.g., an ordered vector

%k = [Xf,xé‘,...,x,’,‘k]?

The ordering

© does not convey relevant information,
@ cannot (generally) be inferred from physical reality.

state
e target states
@ Example:
2
~3 [ ]
x> =1][1.3,1.8] or .
1

% =[1.8, 1.3]?

1 32 3§ a4 & tme

@ Both the transition model and posterior would need to handle
uncertainties in the ordering
~~ arbitrary choices and irrelevant uncertainties!
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@ MTT: we argue that the set of trajectories is a suitable state

XK= {X{, X5, X%}

where XX is a trajectory and N is fitargets present until time k.
@ We denote trajectories as X = (t,x%'), where

e t: start time,
e / duration,

o x¥ = (x} x2,... x) sequence of target states.
state
o Examp|e: e target states
3_ [x3 x3
X3 ={X?, X5} where 5 —,

X? =(1,(0.5,0.8,1.3)) 1 .//'
X3 =(2,(2,1.8)). .
1 2 3 a2 35 ume
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@ Note: three possible trajectory types during prediction:

@ persist/survive: extended by including the new state at the end
of the trajectory.

@ ended/dead: remain the same.

© newly born: obtain a trajectory X = (k, x*).

@ Trajectories are never removed from the set.

o target states

state
o Example: * measurements
X! = {X{} where )
X? = (1,(0.5)). 1 :
i 5 3 1 5 "me
Objective in MTT
Recursively compute p(Xk|Z"). J
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@ Note: three possible trajectory types during prediction:

@ persist/survive: extended by including the new state at the end
of the trajectory.

@ ended/dead: remain the same.

© newly born: obtain a trajectory X = (k, x*).

@ Trajectories are never removed from the set.

@ Example: state o target states
X2 = {X2, X2} where

= measurements

X? = (1,(0.5,0.8))

1 ..
X3 =(2,(2)). —
1 2 3 & s ume
Objective in MTT
Recursively compute p(X*|Z*). J
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@ Note: three possible trajectory types during prediction:

@ persist/survive: extended by including the new state at the end
of the trajectory.

@ ended/dead: remain the same.

© newly born: obtain a trajectory X = (k, x*).

@ Trajectories are never removed from the set.

o target states

. state
) Example- = measurements

X3 = {X3, X3} where

X;? =(1,(0.5,0.8,1.3))
X3 =(2,(2,1.8)).

. .
| T T T T — time

Objective in MTT
Recursively compute p(X*|Z*). J
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@ Note: three possible trajectory types during prediction:

@ persist/survive: extended by including the new state at the end
of the trajectory.

@ ended/dead: remain the same.
© newly born: obtain a trajectory X = (k,x¥).

@ Trajectories are never removed from the set.

o target states
@ Example: state ’
X* = {X}, X3} where measurements
) .
Xt =(1,(0.5,0.8,1.3,1.9)) .
1 .
X2 = (2,(2,1.8,1.0)).
[ 1 2 3 4 &5 time
Objective in MTT
Recursively compute p(X*|Z*). J
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@ Note: three possible trajectory types during prediction:

@ persist/survive: extended by including the new state at the end
of the trajectory.

@ ended/dead: remain the same.
© newly born: obtain a trajectory X = (k,x¥).

@ Trajectories are never removed from the set.

o target states
@ Example: state )
X5 _ {Xir) X25} Where measurements
, .
X? =(1,(0.5,0.8,1.3,1.9)) .
1 . . . .
X5 = (2,(2,1.8,1.0,0.6)).
1 3 3§ 4 & tume
Objective in MTT
Recursively compute p(X*|Z*). J
Tools for MTT and MTF

L. Svensson



@ Why is

XK= {X{, X5, .., XE )

a suitable state?

@ XX captures/is our quantity of interest,
@ Xk is a minimal representation:

XK &2 physical quantities of interest.

State target states
@ Example: L

X3 = {X3, X3} where

X2 =(1,(0.5,0.8,1.3)) 1 /
X3 =(2,(2,1.8)). .
1 2 3 a1 s ume
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@ One can use conjugate priors for sets of trajectories to develop
algorithms.

@ For standard models, the result resembles MHT:

© hypothesis trees that grow rapidly,
@ merge/prune branches to reduce complexity.

o Complexity?

e Suppose we are given a data association hypothesis, 6.

o To compute p(Xk|Zk,9) we should smooth our estimates at
all times, 1,2,..., k. Unfeasible!

e In practice, we often only update estimates for last L steps,
k—L+1,...,k, where L is a design variable.
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Example: standard measurement model

o Each target produces a noisy measurement with a probability of detection. There is
additional clutter.

10 10 10,
PN SV
51 x x x 5 5
— X§ x x — —
E X% %x E £
= x x x c c
S o «x HOOOEKX X S 0 2 0
3 x* % x 3 3
a X x o a
-5, x M x -5 -5
M x
-10! > -10 -
0 5 10 15 20 0 5 10 15 20 10 0 5 10 15 20
Time (s) Time (s) Time (s)
(a) Measurements (b) 0.42 (c) 0.12
10, 10

Position (m)
)
Position (m)
o

15 20 0 5 15 20

10
Time (s)
(d) 0.12 (e) 0.04

10
Time (s)
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@ One can also use sets of trajectories to extend the PHD filter to
trajectories.

@ ldea: recursively approximate p(Xk|Zk) as a Poisson
multitrajectory PDF,

v({X1,.. ., Xn}) = e AN H P(X).

@ Scenario and results assuming standard model for point targets:

700,

¥ positon (m)
y position (m)

0 100 200 300 400 500 600 700
X position (m)

0 100 200 300 400 500 600 700
X position (m) (a) k =50

@ The algorithm efficiently estimates trajectories in a principled
manner.
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@ Another approach to MTT is to use sets of labelled target states

e append target states with a static label, 7,
%= (x,4).
e two targets cannot share the same label,

e normally, labels lack physical interpretation and are
unobservable,

o x¥ = {&f,... &K } is used as state variable.
Time step
o Labels enable us to connect . (! ) i
state estimates across time. 2 o ° °
w2 x
. 3
o Labels are arbitrary; we could 2.0 .
replace o with ¢ and O with o o o °
. . . . 0
without changing trajectories. 1 2 3 4 5
Time step

CHALMERS Chalmers University of Technology Tools for MTT and MTF L. Svensson



@ A sequence of sets of labeled states (left figure) fully describe a set
of trajectories (right figure).

Time step
1 5 X
3 et ) o 8 /
° )
) ° 2
2 ° ]
5 2 x B2
g x ‘é’, /
s ©
=1 x R o o -1 /
o o
0 0
1 2 3 4 5 1 2 3 4 5
Time step Time step

@ However, labels are arbitrary

(xt, ..., x9) &% physical quantities of interest.
@ In theory, one could compute p(x*,x?,...,x¥|Z¥), but this is

essentially a more involved version of p(Xk|Z¥).
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@ Standard approach: recursively compute

p(x|Z"),

and extract estimates XX.

@ In many cases, this yields reasonable estimates.

@ In simple scenarios, it resembles approximating p(Xk|Zk) and use
L =1 in that there is no smoothing.

@ However, let us look at these marginal densities
p(xl‘Zl)7 p(x2’22)7 ol p(xk|Zk),

in a more challenging example.
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@ Toy example: Suppose we are tracking two people, who
occasionally meet to chat together. Labels are +1 at k = 1.

o k=1: Pr[x! = {(+5,+1),(-5,-1)}] =1
o k=6: we are now confused about labels
Pr[x6 = {(+57 +1)7 (_57 _1)}] =
Pr[x® = {(+5,—1),(-5,+1)}] = 0.5.

51

251

ot

Position

251

5L

2 4 6 8 10
Time step

@ Avre label uncertainties/mixed labeling a problem?
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@ Toy example: Suppose we are tracking two people, who
occasionally meet to chat together. Labels are +1 at k = 1.

o k=1: Pr[x! = {(+5,+1),(-5,-1)}] =1
o k=6: we are now confused about labels
Pr[x6 = {(+57 +1)7 (_57 _1)}] =
Pr[x® = {(+5,—1),(-5,+1)}] = 0.5.

Position

+17
—1?

8 10

Time step

@ Avre label uncertainties/mixed labeling a problem?
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@ Toy example: Suppose we can tell that the persons do not move
from time 6 to 10.

25

Position

25

Time step

@ What do we know about the labels at time 107
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@ Toy example: Suppose we can tell that the persons do not move
from time 6 to 10.

5

25

Position
o

2.5

+17
-1?

Time step

@ What do we know about the labels at time 107

@ Still equally confused about labels:

Pr[x'® = {(+5,4+1), (-5, —-1)}] = Pr[x'® = {(+5, -1),(~5,+1)}] = 0.5.
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@ Toy example: Suppose we can instead tell that the persons change
place from time 6 to 10.

251

Position

251

Time step

@ What do we know about the labels at time 107
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@ Toy example: Suppose we can instead tell that the persons change
place from time 6 to 10.

25

Position

-25

= +1?7
—1?

Time step

@ What do we know about the labels at time 107

@ Still equally uncertain about labels:
Pr[x'® = {(+5,+1), (=5, ~1)}] = Pr[x*® = {(+5,~1),(~5,+1)}] = 0.5.
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Conclusions?

@ Trajectories are assumed known from time 6 to 10.

@ Still, p(x1°|Z1°) is identical for static and crossing trajectories.

= p(x®|Z®) and p(x'°|Z'°) provide no information about how to
“connect the dots".

@ In fact, once we have “total mixed labeling”, a labeled set contains
as much trajectory information as an unlabeled set.

@ Using sets of trajectories, we are able to tell if they stayed in the
same place or not.
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@ Note that trajectory information is often important and
non-trivial to extract.

1 Bomb?

Position

1 Bomb?

Time step
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@ Appearing targets are modeled using a birth process, and label
uncertainties may arise already at target birth.

Example:
o Imagine tracking two people A room
who enter a room together.

o In many cases, this leads to
. . Door
mixed labeling, even when
trajectories can be estimated
accurately.

@ Poisson processes are commonly used birth processes, but the
density of a labeled Poisson RFS satisfies, e.g.,

({0, ) (e, £2)}) = 7({(xa, 2) (2, 1) }),

which leads to mixed labeling when two targets appear
simultaneously, even if they are far apart.
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@ MTT: we argue that the set of trajectories is a suitable state

XK= {X{, X5, XK

where X* is a trajectory.

@ XK is our quantity of interest,
@ XK is a minimal representation:

XK &2 physical quantities of interest.

Objective

Compute
p(X¥|Z").
That is, compute posterior density of our quantity of interest.

@ Sets of trajectories, Xk, enable

© Development of novel algorithms, e.g., TPHD.
@ Straightforward extraction of trajectory information in a fully
Bayesian manner.
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In Bayesian statistics:

. osterior
@ we compute posterior —F
densities of, x,

@ posterior density summarizes

what we know about x, likelihood
—

@ Very usefull E.g., can
compute optimal estimates.

Outline:

1) Sets of trajectories: suitable x in MTT and MTF?
Which are our quantities of interest?

2) Conjugate prior densities: reasonable priors and likelihoods to
obtain tractable posteriors?

3) Metrics: how can we measure performance in MTT and MTF?
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Things to model:

@ Prior: e target states

@ target birth state g :_alr ge;dtete;tion
. alse aetection
@ target motion and death

5 ®
@ Likelihood: E
1 ® ®
@ target detections s (=
@ false detections. | 13 3 4 ¢ time

e Posterior: p(x*|Z¥)

o Key components: multi-Bernoulli (MB) and Poisson processes.
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Definition: Bernoulli

@ x is Bernoulli random finite set (RFS) if
%) 1—r ifx=0
p(x) = .
rpi(x) if x ={x},
that is, it can only contain zero or one object states.

@ Here, r is an existence probability and p;(x) is a density.

Things it can model: ss
'//r=0.8 \}
@ Set of detections from a target 4 {7
r =prob. of detection, Py. S
Al
@ Distribution of a single target
r =probability of existence T
OO 1 2 é 4 5 6
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multi-Bernoulli RFS

@ x is multi-Bernoulli (MB) RFS if

X = UX,’
i=1

where X1, . ..,X, are independent Bernoulli RFS.

Things MBs can model:

@ Set of target detections,
conditioned on the set of
targets.

@ Posterior distribution of
targets.

@ Distribution of appearing
targets; the birth process.

CHALMERS Chalmers University of Technology
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N —
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27 =08
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@ If f;(x;) are Bernoulli densities, then 6
n 5 TN
mb /e )
)= > JIfix) oL
X1 WX, =X j=1 k] il

is a MB density. ;
Models: n potential targets (tracks).

@ x is a MBM RFS if its density is X

fmbm(x) — Z w,~f,-’"b(x), 6

where >~ w; = 1. o3
Models: .
© w; probability of data association 1
hypothesis i S T e
@ f™(x): distribution of potential %

targets given ith hypothesis.
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Definition: Poisson processes

@ x is Poisson RFS with intensity A(x) if

6 = [— / AX) dx] 1)

XEX

@ Interesting properties:

© We can generate x = {x1,...,x,} ~ p(x) by
i) generating n ~ Poisson(}\)
ii) generating x1,...,Xp ~ AL

X)(
where A = [ A\(x) dx.

@ If A and B are two disjoint regions, x| A and x (| B are
independent Poisson processes.
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Definition: Poisson processes

@ x is Poisson RFS with intensity A(x) if

p(x) = exp [_ / A(x) dx] IR

XEX
Example:
Things a Poisson RFS can model:
Ing ! A(x) = L3N (x; p1, P1) + 0.9N(x; pa, Pa)
@ Set of false detections (clutter °
measurements). 5
s ov=138 %
4 / 1% /’
@ Distribution of appearing s N 7
targets; the birth process. )
2
@ Set of target detections from a 1 V%?o'g\)
single extended target. 0
0 1 2 3 4 5 6
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Objective in MTF J

Recursively compute p(x*|Z¥).

@ Most Bayesian filters rely on prediction and update steps:

p(x*|Z¥)
zk —{ Update %k
k+—k+1
p(xk|zk71) Pred. p(xk71|zk71)

Another key property

® p(xk—1|Z*71) and p(x¥|Z*) are the same type of density
= we (may) have a recursive algorithm!

@ Example: in a Kalman filter, both p(x*~|Z*~1) and p(x¥|Z*) are
Gaussian.
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Standard approach to filtering

© Select a density parameterization p(x; 8).
@ Start from

p(xk_l‘zk_l) ~ p(xF1; Or—1k—1)

and find 6 such that

p(x¥|Z") = p(x; Oi)-

o p(x;0) = N(x; u, P) KF, EKF, UKF, CKF, PDA,
NN, GNN, PDA, JPDA.

° p(x;0) = Z,N:1 w(§(x — x() Particle filters.
e What is a suitable parameterization p(x;6) for MTF?
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@ In MTF and MTT we can use conjugate priors.

Conjugate priors in multi-object filtering

A family of distributions, {p(x; #)}s is conjugate (to certain motion
and measurement models) if

P(Xk71|zk71) = p(x* Ok—1k—1)

k|7k—1 k.
p(x*|Z = p(x; Opqu—
= 30 jk—15 Ok|k ( k| " ) ,E Kle-1)
p(xX|Z¥) = p(x*; Ox1i)

e Example: the family of Gaussian densities is conjugate to
linear and Gaussian state space models.

o Note 1: conjugate families seem to enable exact filtering.

o Note 2: computing p(x*|Z¥) may still be intractable.
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Poisson multi-Bernoulli mixture (PMBM)
A PMBM is a conjugate prior to standard models for MTF.
That is, if p(x!) is a PMBM, so are all future densities p(x¥|Z“—1) and p(x|Z*).

This holds for both point and extended targets.

Definition: PMBM
x is a PMBM RFS if

X = Xp W Xmbm,

where x;, a Poisson RFS and xypm is an MBM RFS.

@ Poisson: set of undetected targets.

@ MBM: set of detected targets.
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@ Poisson intensity increases in occluded areas where we may have
undetected objects.
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@ Let us illustrate the prediction and update for a PMB.

@ Prediction events:

Previous posterior, p(xk~1|Zk~1):
6
st e

4 rs * ;

XNS
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@ Let us illustrate the prediction and update for a PMB.

@ Prediction events:

© existing targets may move,

6
5 I
L Y
e )
4 { E
XN 3
2
1
0 0
0 1 2 3 4 5 6 0 1 2 3 4 5 6
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@ Let us illustrate the prediction and update for a PMB.

@ Prediction events:

© existing targets may move,
@ or die (disappear),

Previous posterior, p(x*~1|Z¥~1):

6
5 I
L Y
e )
4 { L
XN 3
2
1
0 0
0 1 2 3 4 5 6 0 1 2 3 4 5 6
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@ Let us illustrate the prediction and update for a PMB.

@ Prediction events:
© existing targets may move,
@ or die (disappear),
© new targets may arrive: Poisson birth process, Ap(x).

Previous posterior, p(x*~1|Z¥~1): Predicted density, p(x*|Z*~1):

6
5 e, .
. ‘/.,»" ;g ;

N3
2
1
0O 1 2 3 4 5 6 00 1 2 3 4 5 6
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@ The MB contains Bernoulli components that we often call tracks.
Suppose we have n tracks (n = 2 in illustrations).

o Update step: 6
For each measurements we have n+1 5 3
hypotheses: 4
@ For i=1,2,...,n: measurement was 3
generated by track i. = r; = 1. B x.\
@ Measurement was generated by J
previously undetected target or ! g

clutter. o
0 1 2 3 4 5 6

= create a new track!

@ Note 1: tracks are initiated based on measurements.

@ Note 2: posterior is a mixture, due to the many different
hypotheses.
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@ Number of hypotheses grows quickly with each update.

@ Basic idea: use pruning and merging to reduce fhypotheses. Two
versions:

@ PMBM filters: reduce hypotheses to a manageable number.
@ PMB filters: reduce fhypotheses to one.

@ Novel techniques:

@ variational merging: enables improved merging across
different tracks (similar to SIPDA).
@ recycling: low-probability Bernoullis approximated as Poisson.
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@ Why use a conjugate prior? (- tractability)

©@ PMBMs can approximate true posterior arbitrarily well by
maintaining many hypotheses.

@ The best PMB is better than the best cluster processes in
Kullback-Leibler sense.
(Current proof only valid for point targets).

CHALMERS Chalmers University of Technology Tools for MTT and MTF L. Svensson



@ Let us try to understand the relation to a labeled approach.

@ Can we augment our state with an implicit (unobservable)
label? Yes, this does not change the above results.

@ However, to obtain reasonable labels we should make sure that:

© birth process generates unique labels,
@ labels do not change with time.

@ Birth process?

© labeled Poisson = may yield total mixed labeling already at
birth,
@ labeled multi-Bernoulli can avoid this problem.

@ Both (labeled) MBM and (labeled) PMBM are conjugate priors for

this birth process.
Why is MBM a conjugate prior?
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@ Let us illustrate the prediction and update for a MB.

@ Prediction events:

Previous posterior, p(x*~1|Z¥~1):
6

5r0 e

4 / 7 )

T 1 R
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MB prediction

@ Let us illustrate the prediction and update for a MB.

@ Prediction events:

© existing targets may move,

Previous posterior, p(x*~1 | Zk-1y:

6
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2
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X ;
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X
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Predicted density, p(x*|Z¥~1):
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MB prediction

@ Let us illustrate the prediction and update for a MB.

@ Prediction events:

© existing targets may move,

@ or die (disappear),

Previous posterior, p(x*~1 | Zk-1y:
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Predicted density, p(x*|Z¥~1):
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MB prediction

@ Let us illustrate the prediction and update for a MB.

@ Prediction events:

© existing targets may move,

@ or die (disappear),

© new targets may arrive: MB birth process.

Previous posterior, p(xk*1|zk*1):

6
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4 / 9 J;

S e

0 1 2 3 4 5
1

Predicted density, p(x*|Z¥~1):
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@ The MB birth creates new tracks at pre-defined locations.
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@ The MB contains Bernoulli components that we often call tracks.
Suppose we have n tracks (n = 2 in illustrations).

o Update step:
For each measurements we have n+ 1
hypotheses:

@ Fori=1,2,...,n measurement was
generated by track /. = r; = 1.
@ Measurement is clutter.

= no new tracks!

@ Note 1: update is identical to PMBM with A(x) = 0.

@ Note 2: no new tracks during update.
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@ As you have seen, labels can be handled using LMBM, which is
essentially a special case of a PMBM.

@ However, the standard conjugate prior for labelled RFS is the
0-GLMB distribution.

@ Yet another conjugate prior? Not really.

@ The §-GLMB is a special type of LMBM where all existence
probabilities are 0 or 1.
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@ How can we restrict the existence probabilities to r € {0,1}7
By creating more hypotheses!

@ Suppose posterior at time k — 1 and is an LMB with r =1 for all
Bernoulli components.

@ After prediction, their existence probabilities are Ps, but we can also
express this using 2" hypotheses with r; € {0,1}:

@ An LMBM representation: @ A 0-GLMB representation:

6
5
4

<3
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@ Two popular algorithms for labeled MTF are:

@ the §-GLMB filter: maintains several/many hypotheses; all
correspond to LMBs with r € {0, 1}.

@ the LMB filter: reduces the 6-GLMB posterior to a single
LMB with general existence probabilities.
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e PMBM, LMBM and §-GLMB are all conjugate priors for MTF.
@ Conjugate priors are useful to develop powerful algorithms.

@ Using a Poisson birth process and a PMBM posterior has several
advantages:

© tracks are initiated by measurements,

@ fewer hypotheses,

© enables recycling (approximating low-probability tracks as
Poisson).
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In Bayesian statistics:

. osterior
@ we compute posterior —F
densities of, x,

@ posterior density summarizes

what we know about x, likelihood
—

@ Very usefull E.g., can
compute optimal estimates.

Outline:

1) Sets of trajectories: suitable x in MTT and MTF?
Which are our quantities of interest?

2) Conjugate prior densities: reasonable priors and likelihoods to obtain
tractable posteriors?

3) Metrics: how can we measure performance in MTT and MTF?
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@ Metrics are useful to

© evaluate performance of algorithms,
@ derive optimal estimators.

We have developed metrics for MTF and MTT.

1) Generalized OSPA: a metric for MTF, i.e., a metric between sets
of targets.

o GOSPA paper received best
paper award at Fusion, 2017,

o YouTube video where the
paper is carefully explained.

Generalized optimal sub-pattern assignment metric (GOSPA)

2) A metric for MTT, i.e., a metric between sets of trajectories.

@ Trajectory version of GOSPA Y1, o Yz, o
that also penalizes “track AE( o a
switches". ' . : . ik

1 2 3 4 5
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o What is GOSPA?

o A metric on sets of targets, useful to evaluate performance and
design estimators.
e An alternative to OSPA!

Informal definition

GOSPA = localisation error + % (tmissed targets + fifalse targets)

o false

o Why GOSPA instead of OSPA? o false

o We often want few false and 9 detectexd missed

missed targets.
~+ GOSPA measures this,
OSPA doesn't

Figure: Detected, missed and false
targets

x-truth, o-estimate
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e Computing GOSPA (a« =2,p=1):

1) Find optimal assignments between sets. o false
Remark 1: pairs are left unassigned if
d(x,y) > c. o il
Remark 2: we refer to unassigned elements as ase
false/missed targets. X missed
. . g detected
2) Assigned pairs cost d(x, y).

3) Unassigned elements cost c/2.
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e Computing GOSPA (a« =2,p=1):

1) Find optimal assignments between sets. o false
Remark 1: pairs are left unassigned if
d(x,y) >c o fa
Remark 2: we refer to unassigned elements as ase
false/missed targets. X missed
. . g detected
2) Assigned pairs cost d(x, y).

3) Unassigned elements cost c/2.

Formal definition, GOSPA, o = 2

min d(x;, + — | X +1Y
min | > d0xi )" + X+ Y-
(i)ey ﬁm|ssed fifalse

where X : set of targets, Y : set of estimates and I : set of possible
assignments.
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@ The GOSPA metric is a sum of three terms:

GOSPA = local. error + % (#missed targets + fifalse targets)

o In [Xia2017]?, the performance of different multi-Bernoulli
filters evaluated using GOSPA.

d generalised labelled multi-Bernoulli (6 GLMB)

Labelled multi-Bernoulli (LMB)

Poisson multi-Bernoulli mixture (PMBM)

Poisson multi-Bernoulli (PMB)

@ Scenario

e Challenging scenario involving six targets in close proximity at
the mid-point of the simulation.

2Xia et. al, "Performance Evaluation of Multi-Bernoulli Conjugate Priors for
Multi-Target Filtering”, 20th Inter. Conf. on Information Fusion, July 2017.
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@ Performance of algorithms compared using GOSPA:
localisation error, # missed and # false targets
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5-GLMB (green), LMB (magenta) PMBM (red), PMB (Murty) (blue)

@ GOSPA clarifies: most errors are due to missed targets!
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@ Scenario3: Two extended targets are well separated, but move
closer to each other before they separate again.

@ PMBM achieves the lowest GOSPA.
The PMBM is much faster than §-GLMB, but slower than LMB.
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3Granstrom, K., et. al, 'Poisson multi-Bernoulli conjugate prior for multiple
extended object estimation”. arxiv.org/abs/1605.06311.
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in in Proc. 17th International Conference on Information Fusion,
July 2014.

ﬁ A. F. Garcia-Fernandez, L. Svensson and M. Morelande,
“Multiple target tracking based on sets of trajectories”
arXiv pre-print. [Online]. Available: arxiv.org/abs/1605.08163.
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arXiv pre-print. [Online]. Available: arxiv.org/abs/1605.07264.

CHALMERS Chalmers University of Technology Tools for MTT and MTF L. Svensson


arxiv.org/abs/1605.08163
arxiv.org/abs/1605.07264

Random finite sets (RFSs) and labelled RFSs
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Statistical Multisource-Multitarget Information Fusion.
Artech House, Inc., 2007.
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“Labeled random finite sets and multi-object conjugate priors”
IEEE Transactions on Signal Processing, 61(13), 2013.
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“Labeled random finite sets and the Bayes multi-target tracking
filter”
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IEEE Transactions on Signal Processing, 62(12), 2014.
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Part Il: conjugate prior densities

[ J. L. Williams,
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2015.

a J. L. Williams,

“An efficient, variational approximation of the best fitting
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in in Proc. 15th International Conference on Information Fusion,
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ﬁ K. Granstrom, M. Fatemi and L. Svensson,
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estimation”
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